
An Energy-Aware Combinatorial Auction-Based Virtual Machine

Scheduling Model and Heuristics for Green Cloud Computing
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Abstract

Considering the increasing demand for cloud computing, and the financial and envi-

ronmental impact of the increasing energy consumption trend of data centers, improv-

ing energy efficiency is vital for cloud service providers. In this study, an energy-aware

virtual machine scheduling model is proposed which is based on the multi-unit nondis-

criminatory combinatorial auction. The model includes a powerful bidding language

that allows users to declare their complicated virtual machine requests using logical

AND and OR relations along with the time constraints. The study also presents the

formal definition of the model and the associated optimization problem for determin-

ing the optimum schedule and energy-efficient placement of VMs on physical servers.

The optimization problem is formulated using integer linear programming and sev-

eral heuristic solution methods including the Genetic Algorithm are proposed for this

problem. The performances of the model and the proposed heuristics are assessed on a

comprehensive test suite. The proposed model is estimated to provide approximately

a 37% improvement in revenues, and the solution methods are estimated to provide

high-quality solutions within only 5% of the optimum which enable the model to be

deployed in large-scale clouds.

Keywords: Cloud Computing; Resource Scheduling; Combinatorial Auctions; Energy-

Aware; Genetic Algorithm; Virtual Machine Placement.
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1 Introduction

Cloud computing has an important place in the Information Technologies (IT) industry as

it offers users an environment where they can develop and manage their applications and

services without the need to set up their own IT infrastructure. Cloud service providers

offer flexible and scalable environments with a pay-as-you-go pricing model that prevents

users from over-provisioning or under-utilizing resources [1]. Software as a Service (SaaS),

Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) models have been

proposed to examine the cloud environment in detail which vary according to management

and control capabilities [2].

Cloud computing systems consist of computing and storage resource pools in data

centers that require large amounts of energy. The amount of energy consumed by data

centers in the United States was reported as 70 billion kWh in 2014 [3]. Further studies es-

timate that the amount of energy required will increase with the growing demand for cloud

computing systems, with the rate of increase depending on the success of the efficiency

measures taken [4]. Currently, annual data center energy demand accounts for approxi-

mately 1% of global electricity consumption and is expected to reach approximately 4.5%

by 2025 [5, 6]. The cost of this intensive energy use constitutes the biggest share in the

budget of cloud service providers [7].

Beyond the financial impact, the environmental aspects of energy use should also be

considered. Recent studies estimate that the share of data centers in the world’s total

carbon emissions is approximately 0.3% [8], and data centers are responsible for approxi-

mately 45% of the total carbon emissions of the ICT industry [9]. Considering this negative

impact on global warming, reducing energy use and encouraging cloud service providers

to adopt renewable energy sources are essential for sustainability. Major cloud service

providers such as Google and Amazon have invested heavily in renewable energy in recent

years, and both companies have declared that they aim to operate on a carbon-free energy

ecosystem by 2030 [10, 11].

The most significant component of the energy use of a data center is the energy use

of the ICT equipment which also indirectly affects the infrastructure energy cost. [12].

An effective way of reducing the energy consumption of physical servers is to increase
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their utilization levels [13–15] which can be achieved with the use of virtualization and

consolidation technologies. With these methods, energy efficiency can be significantly

increased by placing virtual machines (VMs) on the smallest number of physical servers

possible, i.e. by consolidating VMs and putting the remaining idle physical servers into

low-power mode, also known as sleep mode.

In this study, an Energy-Aware Combinatorial Auction-Based Virtual Machine Schedul-

ing Model (ECO-CABS) is proposed for providing an energy-efficient scheduling solution

for the cloud environment based on the combinatorial auction institution. In this schedul-

ing model, users submit their requests as bids using the provided bidding language which

allows users to request a set of VMs along with the duration requested. They can also

declare a time window inside their bids so that the VMs specified in their bids are allocated

to the users for the required duration in the specified time window. The proposed model

is based on the powerful multi-unit nondiscriminatory combinatorial auction mechanism

[16] which allows users to express their complex VM requests using logical AND and OR

relations in a single bid. The objective of the model is to satisfy the maximal set of bids

providing the highest profit for the cloud provider while considering the non-linear energy

costs of the physical servers.

This study presents the formal definition of the ECO-CABS model along with an in-

teger linear programming formulation of the associated optimization problem for outcome

determination. Since the optimization problem is proven to be intractable, several heuris-

tic solution methods including the Genetic Algorithm are proposed. The performance of

the model and the quality of the solutions found by the proposed methods are demon-

strated on a comprehensive test suite prepared using a novel test case generator designed

for this model.

The paper is organized as follows: A brief literature review is provided in the next

section. In Section 3, the ECO-CABS model is explained in detail using an example

scenario. The mathematical formulation of the ECO-CABS model and the corresponding

optimization problem are introduced in Section 4. The proposed heuristic methods are

explained in Section 5 and the experimental results are discussed in Section 6. Finally,

the paper is concluded in Section 7.
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2 Literature Review

In this section, a brief survey of energy-aware VM allocation and scheduling methods

proposed in the literature is presented. Beloglazov et al. [17] propose an energy-aware re-

source allocation and dynamic consolidation technique. Their first method, which consists

of two main components, is responsible for the allocation of virtual machines, while their

second method is responsible for the selection of virtual machines to be migrated. Rawas

et al. [18], on the other hand, propose both online and offline virtual machine placement

model called LECC which aims to reduce energy consumption and carbon footprint of

geographically distributed data centers.

Ghribi et al. [19] introduce two algorithms using integer linear programming: an op-

timal energy-aware allocation algorithm which is solved as a bin packing problem for

consolidation, and a migration algorithm to continuously optimize the number of used

servers. The second algorithm uses the first one to reduce energy consumption. Zhu

et al. [20] propose a three-dimensional virtual resource scheduling method in which the

virtual resource allocation problem is considered as the multi-dimensional vector bin pack-

ing problem. They propose several heuristics for each of the allocation, scheduling, and

optimization phases of their method.

Ding et al. [21] propose an energy-aware virtual machine scheduling method that satis-

fies deadline constraints. The method uses a performance-to-power ratio to rank physical

machines while operating them at their optimal frequency level. In another study by

Ruan et al. [22], the same performance-to-power ratio strategy is used for scheduling vir-

tual machines. In this energy-efficient solution, the performance-to-power ratio of physical

machines is based on a metric that is used in the SPECpower ssj2008 [23] benchmark suite.

The study also presents experimental results conducted using the CloudSim [24] platform.

An energy-aware scheduling algorithm for scientific workflows has been introduced by Li

et al. [25]. In this approach, the optimal virtual machine types are selected for scientific

tasks. Following the virtual machine selection procedure, policies such as task merging

and reuse of idle virtual machines are applied by the algorithm.

In the work of Chandio et al. [26], six energy-aware virtual machine strategies are

proposed using dynamic voltage-frequency scaling technology with deadline constraints for
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minimizing the makespan. They present the effectiveness of these strategies on real-world

high-performance workloads. Ghose et al. [27] introduce scheduling approaches for energy-

aware scheduling of tasks with hard deadline constraints. Through several experiments,

they estimate an energy-saving rate of 43% while satisfying the deadlines of every task

available in the experiment.

Dai et al. [28] propose two approximation heuristics for the energy-aware virtual ma-

chine scheduling problem. The problem is formulated as an ILP and the approximation

algorithms use the relaxed version of the ILP. Mishra et al. [29] have introduced an energy-

efficient virtual machine allocation method that has a two-step allocation process where

tasks are assigned to virtual machines and virtual machines to physical servers. The

proposed method aims to increase energy efficiency using virtual machine consolidation.

In addition to the approximation and heuristic approaches, metaheuristic algorithms

have also been used for the energy-aware virtual machine scheduling problem. Duan

et al. [30] propose an energy-efficient virtual machine scheduler based on Ant Colony

Optimization. The scheduler employs a prediction model along with an algorithm to

provide effective host utilization in heterogeneous data centers. Tao et al. [31] formulate

resource scheduling as a Multi-Objective Optimization Problem. Their approach adopts

a hybrid Genetic Algorithm (GA) to find Pareto optimal solutions using the objectives of

minimizing both makespan and energy usage. Another GA-based energy-aware scheduling

approach has been introduced by Fernández-Cerero et al. [32]. The proposed approach

not only aims to provide efficient utilization but also considers the security demands of

the users. The policies defined in the study regulate the balance between the makespan

and energy usage of the tasks. Lei et al. [33] address the problem of task scheduling

in a data center that uses renewable energy sources along with conventional ones. The

study proposes a multi-objective, co-evolutionary approach enhanced with an opposition-

based learning strategy. In another learning-based study, Sharma and Garg [34] propose

an energy-efficient task scheduling model using supervised neural networks. The primary

objective of this model is to reduce makespan while also reducing energy usage. At the

same time, it also aims to reduce the execution overhead and the number of active racks.

The authors used an artificially created dataset to train the network and obtained 99.9%

accuracy. The results of the experiments indicate approximately 60% improvement in
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makespan while reducing the energy consumption by approximately 45% for heavily loaded

cloud environments.

Unlike the other studies using a centralized management system, Wang et al. [35]

propose a decentralized multi-agent-based approach for the resource allocation problem.

In this method, each agent is responsible for managing a physical server cluster. Instead

of making virtual machine consolidation decisions through a central agent, these decisions

are made based on negotiations between the agents. These agents negotiate and exchange

virtual machines to minimize the total energy consumption of the system.

Some of the studies in the literature employ the Particle Swarm Optimization (PSO)

metaheuristic for the resource scheduling problem. For instance, Beegom and Rajasree

[36] propose a PSO-based technique that combines two minimization objectives into a

single objective function using the weighted sum approach. The priority between mini-

mizing the total execution time and cost can be decided using these weights. Similarly,

Kumar and Sharma [37] have introduced a PSO-based scheduling approach in which en-

ergy consumption is also considered alongside these factors and all three are combined

into a single objective function. Besides makespan and cost metrics, additional metrics

like task rejection ratio and throughput are presented in this study.

Kessaci et al. [38] introduce two algorithms using a multi-start local search heuristic.

One of them is modeled as a single-objective optimization problem while the other is

modeled as a multi-objective optimization problem. Ilager et al. [39], on the other hand,

have proposed a thermal and energy-aware algorithm based on the Greedy Randomized

Adaptive Search Procedure metaheuristic. Their approach not only prevents the physical

servers from operating at maximum load to maintain their temperature but also minimizes

the number of underutilized physical servers by efficiently scheduling virtual machines.

In their recent works, Chen and Zhang [40] and Pradhan and Satapathy [41] both focus

on optimizing task scheduling to minimize makespan and energy consumption. Chen

and Zhang [40] propose a Diversity-Aware Marine Predators Algorithm (DAMPA) for

task scheduling in cloud computing. This algorithm maintains population diversity and

balances exploration and exploitation abilities. Two presented case experiments show

that DAMPA provides a reduction in both makespan and energy consumption. Pradhan

and Satapathy [41] introduce an Energy Aware Genetic Algorithm for task scheduling in a
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heterogeneous multi-cloud environment. They use a fitness function to minimize makespan

and the energy consumption is calculated using the optimal objective value.

He et al. [42], and Tarafdar et al. [43] propose task scheduling methods to address

energy consumption and deadline constraints. He et al. [42] propose a two-stage scheduling

method for deadline-constrained tasks, combining Enhanced Ant Colony Optimization

(EACO) with the Modified Backfilling (MBF) algorithm. Their method effectively reduces

makespan and energy consumption while increasing the task completion rate. Tarafdar

et al. [43] present two scheduling approaches for deadline-sensitive tasks in a heterogeneous

cloud environment: a greedy heuristic based on the Linear Weighted Sum technique and

an Ant Colony Optimization-based method. They also propose a strategy for scaling cloud

resources to improve energy efficiency and the schedulability of tasks.

Liu et al. [44] suggest a greedy scheduling strategy based on granular computing.

The authors present numerical experiments on the CloudSim platform demonstrating an

increase in resource utilization and a reduction in energy consumption. Hussain et al. [45]

propose the Energy and Performance-Efficient Task Scheduling Algorithm (EPETS) in a

heterogeneous virtualized cloud designed as a two-stage algorithm. In the first stage, the

algorithm aims to reduce makespan while satisfying the deadline constraints, and in the

second stage, it aims to reduce energy consumption without violating deadline constraints.

Walia et al. [46] introduce a Hybrid Scheduling Algorithm (HS) based on the Genetic

Algorithm (GA) and Flower Pollination Algorithm (FPA) for cloud environments. The

results presented indicate that the proposed algorithm outperforms each of the GA and

FPA in terms of resource utilization, completion time, and energy consumption for both

homogeneous and heterogeneous environments.

Ye et al. [47] propose a reliability-aware and energy-efficient workflow scheduling algo-

rithm called REWS, which aims to reduce energy consumption while satisfying workflow

reliability constraints. The algorithm divides the workflow reliability constraint into task

sub-reliability constraints and schedules tasks with an energy-efficient scheduling strategy.

Similarly, Konjaang et al. [48] present an energy-efficient virtual machine mapping algo-

rithm (EViMA) for workflows with deadlines in a cloud environment. EViMA aims to

find an effective schedule that reduces cloud data center energy consumption, execution

makespan, and execution cost and hence improves resource management in clouds.
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Bugingo et al. [49] also tackle the deadline-constrained workflow scheduling problem

in the cloud. However, they propose a multiobjective mechanism and investigate the rela-

tionship between the objectives of cost minimization and energy consumption minimiza-

tion. They propose an algorithm with two variants to satisfy both users and providers

during the configuration selection process. Based on the evaluation results, significant

reductions in energy consumption and cost can be obtained by using the proposed heuris-

tic. Similarly, Tarafdar et al. [50] present a novel workflow scheduling approach for the

Workflow as a Service (WaaS) platform that aims to reduce the mean workflow execu-

tion time, increase energy efficiency, and reduce renting costs of the resources in cloud

environments. In a related study, Alsadie [51] presents a metaheuristic framework called

MDVMA for dynamic virtual machine allocation in clouds. The MDVMA aims to re-

duce energy usage, makespan, and cost simultaneously by using a non-dominated sorting

genetic algorithm (NSGA-II) algorithm-based metaheuristic approach for multi-objective

task scheduling. Sahoo et al. [52] present another approach with dual objectives (the

minimization of makespan and energy usage). They propose a learning automata-based

scheduling framework and the LA-based Scheduling (LAS) algorithm for deadline-sensitive

task scheduling. They demonstrate the effectiveness of their approach using simulations.

Auction-based methods have also been proposed for the allocation and scheduling of

VMs in clouds. Prodan et al. [53] have proposed a Continuous Double Auction (CDA)

model for scheduling scientific tasks. In their work, tasks are modeled as a directed

acyclic graph. A negotiation mechanism based on the CDA model is established between

the sellers and bidders to determine the prices of the resources to be used, and scheduling

decisions are optimized in terms of execution cost and time. Another auction-based virtual

machine scheduling algorithm has been proposed by Kong et al. [54], which takes auction

deadlines and network bandwidth into account while ensuring effective resource utilization.

Finally, in their studies, Gamsız and Özer [55, 56] have proposed a combinatorial

auction-based VM allocation and placement model called the ECO-VMAP model that

includes nonlinear energy usage costs of physical servers. Similar to the ECO-CABS model

proposed in this study, the ECO-VMAP model also utilizes multi-unit nondiscriminatory

combinatorial auction institution [16] for allocating or renting a set of virtual VMs for a

predefined and fixed interval. It introduces the concept of slots for physical servers where
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each physical server is assumed to be preconfigured for a predefined VM type and can

have one or more slots in which a single VM of the predefined VM type can be placed.

The ECO-CABS model proposed in this study complements the ECO-VMAP model by

addressing the energy-aware resource scheduling problem in clouds. The bidding language

is improved to enable the users to declare their preferences for virtual resources along with

the duration they request these resources and to declare a time window in which they

request these virtual resources. The energy model introduced in the ECO-VMAP model

requires that the total energy consumption of each slot of a physical server should be known

for the rental interval. The energy model of the ECO-CABS model is simplified both in

terms of easy applicability and modeling complexity without sacrificing its effectiveness.

The ECO-CABS model requires only idle and maximum power values required for a server

which are already available in the technical specifications of most of the physical servers

(also available in the SPECpower ssj ® benchmark [23]). Being a scheduling model, and

having an improved bidding language and an energy model, the optimization problem of

the ECO-CABS model is significantly different from the optimization model of the ECO-

VMAP model. Hence, the solution methods and the experiments are also significantly

different.

For further discussion on energy-aware task scheduling approaches, the reader is re-

ferred to the recent survey of Ghafari et al. [57].

3 The ECO-CABS Model

In this section, the ECO-CABS model will be introduced on an example scenario. There

are three steps in the model. The first step is to define physical servers and VM types in

a cloud environment. In this scenario, seven VM configurations and one physical server

instance for each VM configuration have been defined. The list of physical servers and

the VM types can be seen in Table 1 and in Table 2, respectively. The VM configura-

tions differ for various computing requirements. For example, configuration GP represents

general-purpose VM instances that are optimized to run basic applications, while CO rep-

resents compute-optimized VM instances that require high-performance CPUs. MO and

SO represent memory-optimized and storage-optimized VM instances, respectively.
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Table 1: List of physical server instances used in the example scenario, including their
configurations and power requirements. Power requirements of the reference servers are
obtained from SPECpower ssj ® benchmark [23]. Note that these values may not reflect
the true power requirements of these servers.

Server
Instance

Reference Server Supported VM
Configuration

Max VM Size
That Can Be

Hosted

Idle Power (W ) Full Power (W )

m1 Dell PowerEdge R6515 GP-1 48 55 231

m2 ASUSTeK Computer RS700A-E9-RS4V2 GP-2 96 106 430

m3 Lenovo ThinkSystem SR860V2 CO-1 96 138 721

m4 HP Enterprise Superdome Flex 280 CO-2 96 258 1117

m5 Inspur Corporation Inspur NF5180M6 MO-1 48 156 680

m6 Supermicro SuperServer SYS-740GP-TNRT MO-2 64 118 633

m7 Fujitsu PRIMERGY RX2540 M6 SO-1 64 137 550

Table 2: Base virtual machine instance types (of size 1x) used in the example scenario.

VM Type VM
Configuration

Base Virtual
CPUs

Base Memory Reservation Price
per Time Slot

v1 GP-1 1 1 GB $0.041

v2 GP-2 1 2 GB $0.050

v3 CO-1 1 4 GB $0.066

v4 CO-2 1 8 GB $0.076

v5 MO-1 1 8 GB $0.100

v6 MO-2 1 10 GB $0.120

v7 SO-1 1 4 GB $0.130

Physical server instances are preconfigured to run a specific virtual machine type.

Depending on the computing capacity of the physical server instances, the maximum size

of the virtual machine instances that can be executed on a physical server instance varies.

In this scenario, seven types of virtual machine configurations are defined as seen in Table 2.

Each VM type is associated with a number of virtual CPUs and an amount of memory

which indicates the base size of the corresponding VM type. Users can, however, request

various sized VMs of any VM type where the size of a VM denotes the multiplier of the

base computing power defined in Table 2. For instance, if a user requests VM type v4 of

size 3.25x then the VM the user requests will have (3.25 x 1 =) 3.25 virtual CPUs and

(3.25 x 4 =) 13 GB of memory. Note that the size of a VM can also be less than 1.

In this scenario, the scheduling period is defined as 10 time slots (e.g. 10 days or

10 weeks), that is, VMs will be allocated to the users within this time frame. In other

words, each server has 10 discrete time slots in which one or more virtual machines can

be scheduled.

Note that in the ECO-CABS model, the service provider may declare a reservation
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price for each VM type which indicates the minimum profit that the provider wants to

make when 1x size of the corresponding VM type is scheduled for one time slot. Referring

to the example values in Table 2, if a VM type v1 of size 24x is scheduled for 3 time slots,

then the reservation price for this VM will be ($0.041 x 24 x 3 =) $2.95.

The second step in the model is to collect bids from users. The ECO-CABS model

is based on the multi-unit non-discriminatory combinatorial auction mechanism defined

by Özer and Özturan [16]. By virtue of this mechanism, users can express their complex

requests in their bids using logical OR and logical AND relations. The logical OR relation

allows users to request alternative virtual machine types in their bids whereas virtual

machines that need to run simultaneously can be easily specified using the logical AND

relation. Along with the VM requests, users can also state the duration of the allocation,

i.e. the requested number of time slots, and restrict the time frame in which the VMs will

be scheduled, i.e. they can declare the earliest start and latest finish time slots for the

schedule.

The bids submitted by the bidders (users) for the example scenario are illustrated in

Figure 1. There are four bidders submitting six bids. Bid 1 submitted by Bidder 1 consists

of two subbids. In the first subbid, Bidder 1 requests three instances of VM type v1 of size

32x or v5 of size 32x. In the ECO-CABS model, the virtual machines requested in a subbid

are defined as alternatives to each other, that is there is a logical OR relationship between

the VM types requested inside a subbid. Therefore, the first subbid can be satisfied if

Bidder 1 gets one of the following configurations:

• Three instances of v1 − 32x

• Two instances of v1 − 32x and one instance of v5 − 32x

• One instance of v1 − 32x of size 32x and two instances of v5 − 32x

• Three instances of v5 − 32x

Since the size of a VM type denotes the multiplier of the base computing power of the

corresponding VM type, v1 instances scheduled for this bidder will have (32 x 1 =) 32

virtual CPUs and (32 x 1 =) 32 GB of memory, whereas v5 instances scheduled for this

bidder will have (32 x 1 =) 32 virtual CPUs and (32 x 8 =) 256 GB of memory.
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Request: (3 instances of v1 – 32x OR v5 – 32x) 
AND (2 instances of v4 – 24x OR v7 – 24x)
Earliest Start Time: Slot 1
Latest Finish Time: Slot 7
Duration: 7 slots
Offered Price: $200

Request: (2 instances of v2 – 24x) AND 
(2 instances of v1 – 24x)
Earliest Start Time: Slot 1
Latest Finish Time: Slot 10
Duration: 3 slots
Offered Price: $100

Request: (2 instances of v2 – 24x OR v5 – 24x)

Earliest Start Time: Slot 1
Latest Finish Time: Slot 10
Duration: 3 slots
Offered Price: $150

Request: (3 instances of v1 – 16x) AND 
(4 instances of v3 – 24x OR v4 – 24x)
Earliest Start Time: Slot 1
Latest Finish Time: Slot 10
Duration: 4 slots
Offered Price: $250

Request: (2 instances of v5 – 24x)

Earliest Start Time: Slot 1
Latest Finish Time: Slot 10
Duration: 7 slots
Offered Price: $450

Request: (2 instances of v5 – 24x)

Earliest Start Time: Slot 1
Latest Finish Time: Slot 10
Duration: 7 slots
Offered Price: $650

Figure 1: Submitted bids in the example scenario.

In the second subbid of Bid 1, Bidder 1 requests two instances of v4 of size 24x or v7

of size 24x. Similar to the first subbid, the second subbid can be satisfied if Bidder 1 gets

one of the following configurations:

• Two instances of v4 − 24x

• One instance of v4 − 24x and one instance of v7 − 24x

• Two instances of v7 − 24x

In the ECO-CABS model, there is a logical AND relationship between subbids, and

therefore for a bid to be satisfied, all of the subbids inside the bid should be satisfied

simultaneously.

In Bid 1, Bidder 1 also requests VMs for a duration of 7 slots, and the earliest start
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slot is Slot 1 and the latest finish time is Slot 7. For this bid, Bidder 1 offers $200, that is

the bidder is willing to pay this amount if requested VMs in both subbids are allocated to

the bidder for 7 time slots, beginning at Slot 1 and ending at Slot 7. Note that declaring

the earliest start and the latest finish times is optional in the ECO-CABS model. If a

bidder does not declare these values in a bid, simply the whole scheduling period is used

for that bid.

Further note that Bidder 1 also submits a second bid, Bid 2, which is independent

of Bid 1 in this scenario. Thus, in the outcome, none, one, or both of these bids can be

satisfied. The ECO-CABS model also allows bidders to declare XOR relations between

their bids. That is, the model allows Bidder 1 to request that at most one of these bids

be satisfied.

The bids in this scenario are formally defined using the bidding language of the model

as follows:

• b1 = 〈{({v1 − 32x, v5 − 32x}, 3), ({v4 − 24x, v7 − 24x}, 2)}, 1, 7, 7, $200〉

• b2 = 〈{({v2 − 24x}, 2), {v1 − 24x}, 2)}, 1, 10, 3, $100〉

• b3 = 〈{({v2 − 24x, v5 − 24x}, 2)}, 1, 10, 3, $150〉

• b4 = 〈{({v1 − 16x}, 3), ({v3 − 24x, v4 − 24x}, 4)}, 1, 10, 4, $250〉

• b5 = 〈{({v5 − 24x}, 2)}, 1, 10, 7, $450〉

• b6 = 〈{({v5 − 24x}, 2)}, 1, 10, 7, $650〉

The bidding language of the ECO-CABS model defines that each bid consists of a

non-empty set of subbids, the earliest start time, the latest finish time, the duration of

allocation, and the offered price. Each subbid, on the other hand, consists of a non-

empty set of VM types including their size and the number of requested VMs. The formal

definition of the ECO-CABS model is given in Section 4.

In addition to the powerful bidding language which allows bidders to express their

complex preferences for VMs, another feature of the model is to provide an energy-aware

mapping of VMs to the physical servers to increase the energy efficiency of cloud data

centers. Different metrics are used in the literature to measure and monitor the energy
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efficiency in data centers [58]. The most important of these metrics is the Power Usage

Effectiveness (PUE) metric [59]. This metric refers to the ratio of the total facility energy

in a data center to the energy used by the IT equipment. Apart from the physical servers

in data centers, other factors such as cooling and power distribution units also consume

energy [60]. Using the PUE metric, one can estimate the energy use of data centers by the

energy use of physical servers. Therefore, only the power usage characteristics of physical

servers will be taken into account in this study to increase the energy efficiency of data

centers.

(a) ASUSTeK Computer Inc. RS700A-
E9-RS4V2

(b) Lenovo Global Technology
ThinkSystem SR860V2

(c) Supermicro Inc. SuperServer SYS-
740GP-TNRT

(d) Fujitsu PRIMERGY RX2540 M6

Figure 2: Power usage characteristics of the reference physical servers used in the example
scenario. The graphs are obtained from SPECpower ssj ® benchmark [23].

The power usage characteristic of a physical server varies according to the computing

components it contains, such as processors, memories, hard disks, solid-state disks, and
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network interface cards. As the utilization level of a physical server increases, the power

it consumes also increases. Also, physical servers consume a significant amount of power

even when they are idle. This can be seen in Figure 2 which shows the detailed power

usage characteristics of the four of the physical servers selected for this example scenario.

With the help of the virtualization technology, virtual machines can be consolidated, i.e.

placed on as few physical machines as possible, and physical servers that are idle can be

shut down or put into low power mode (sleep mode).

The ECO-CABS model places the requested VMs to the physical servers while consid-

ering the energy characteristics of the physical servers. For this purpose, the model uses

an energy function that takes into account both idle power and utilization levels of the

physical servers. Thus, the model automatically performs the consolidation of VMs while

keeping the utilization levels of the physical servers at the optimum level, and hence the

model finds the optimal placement of the VMs to the physical servers.

Bid 1  $0

Status Bid Price

Rejected

Start Time

-----

Scheduled VMs

-----

Bid 2  $100Accepted v2 – 24x, v1 – 24xSlot 1

Bid 3  $150Accepted v2 – 24xSlot 1

Bid 4  $250Accepted v1 – 16x, v3 – 24xSlot 6

Bid 5  $0Rejected ----------

Bid 6  $650Accepted v5 – 24xSlot 4

Figure 3: Outcome of the ECO-CABS model for the example scenario.

The third step in the ECO-CABS model is to determine the outcome. For this purpose,

an optimization problem details of which will be introduced in Section 4 is solved. The

outcome of the ECO-CABS model for the example scenario can be seen in Figure 3 and

the schedule found can be seen in Figure 4. In the outcome, bids 2, 3, 4, and 6 are satisfied.

It is impossible to satisfy Bid 1 since three virtual machine instances of size 32x cannot be

placed on either physical server m1 or physical server m5 both of which have a maximum

VM capacity of 48 (See Table 1). Since bids 2 and 3 request the same virtual machine type

(v2) and the requested sizes of 24x allow them to be executed together on a single physical
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Figure 4: Schedule of VMs found by the ECO-CABS model for the example scenario.

server, the model has scheduled both requests for the same time slots on physical server

2, consolidating the VMs and hence minimizing the energy consumption. Among the fifth

and sixth bids which request the same VM type of maximum size, the latter which has a
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higher offered price has been selected by the model.

Although a generic scenario is provided in this section, the bidding language of the

ECO-CABS model can capture the preferences of the users in a variety of scenarios in

which multiple VMs are needed. Using the instances available in the Amazon Elastic

Compute Cloud [61] for instance, some bid examples for a set of well-known application

types are as follows. Note that scheduling and price details are not provided in the example

bids for clarity.

• Load balancing: In situations where an application experiences high traffic or re-

source demands, multiple VMs can be used to distribute the load evenly across

them. For instance, to request four t3.medium instances in the us-east-1 (North

Virginia) region, and use an Application Load Balancer (ALB), the following bid

can be submitted:

b = {(us-east-1-t3.medium, 4), (us-east-1-ALB, 1)}

• High availability and redundancy: To minimize downtime and ensure continuous op-

erations, multiple VMs can be deployed in different availability zones or regions. For

instance, to request two m5.large or m5.xlarge instances in the us-west-1 (Northern

California) region, and another two m5.large or m5.xlarge instances in the us-west-2

(Oregon) region to ensure high availability, the following bid can be submitted:

b = {(us-west-1-m5.large, us-west-1-m5.xlarge, 2),

(us-west-2-m5.large, us-west-2-m5.xlarge, 2)}

• Microservices architecture: When an application is designed using microservices,

each service can run on a separate VM. This setup allows for independent scal-

ing and management of each service. For instance, for an application with three

microservices, to request one t3.small instance for each service in the eu-central-1

(Frankfurt) region or in the ap-southeast-1 (Singapore) region, the following bid can
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be submitted:

b = {(eu-central-1-t3.small, ap-southeast-1-t3.small, 3)}

• Disaster recovery: To protect against data loss and minimize downtime in the event of

a disaster, organizations may use multiple VMs in geographically diverse locations.

These VMs can be used as failover or backup systems. For instance, to request

a db.m5.large or db.m5.xlarge instance in the ap-northeast-1 (Tokyo) region for

a primary database and another db.m5.large or db.m5.xlarge instance in the ap-

northeast-2 (Seoul) region for backup:

b = {(ap-northeast-1-db.m5.large, ap-northeast-1-db.m5.xlarge, 1),

(ap-northeast-2-db.m5.xlarge, ap-northeast-2-db.m5.xlarge, 1)}

• Multi-tier architecture: In multi-tier application architectures, separate VMs can

be used for each tier (e.g., web, application, and database layers). For a three-

tier application, to request two t3.small or t3.medium instances for the web layer,

three t3.medium or t3.large instances for the application layer, and two r5.large or

r5.xlarge instances for the database layer, all within the us-east-2 (Ohio) region, the

following bid can be submitted:

b = {(us-east-2-t3.small, us-east-2-t3.medium, 2),

(us-east-2-t3.medium, us-east-2-t3.large, 3),

(us-east-2-r5.large, us-east-2-r5.xlarge, 2)}

4 Formal Definition of the ECO-CABS Model

The ECO-CABS model is defined formally as follows:

• M = {m1,m2, ...,mm} is the set of m physical machines available in all data centers

of a cloud where each machine may have a different computational capacity, and

hence a different power requirement;

• V = {v1, v2, ..., vd} is the set of d VM types to be scheduled where a VM type defines
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the base configuration of a VM instance and a VM instance is characterized by both

its type and a size parameter that is the multiplier of the base configuration features;

• the function Θ : M → V is the mapping function that determines the VM type that

each physical machine ma is configured for (ma ∈M,Θ(ma) ∈ V );

• ua denotes the maximum capacity of physical machine ma, that is the how many

base VMs of type Θ(vd) that physical machine ma can host while satisfying Quality-

of-Service requirements;

• the function Ω : V → 2M gives the subset of physical machines that are configured

to execute VM type vk where 2M is the power set of M (vk ∈ V,Ω(vk) ⊆M);

• the scheduling period consists of T time slots;

• B = {b1, b2, ..., bn} is the set of n submitted bids where a bid bi is defined as a five

tuple bi = (Si, ei, li, di, pi), where

– Si is the set of subbids of the bid bi where each subbid sij ∈ Si is a pair

sij = (Hij , qij) such that Hij = {(vij1, gij1), (vij2, gij2), . . . (vijr, gijr)} is the

set of r requested alternative VM type-size pairs, qij is the number of VM

instances requested in the subbid sij , and each pair (vijk, gijk) ∈ Hij denotes

the requested alternative VM type vijk ∈ V and its requested size gijk ∈ R+;

– ei the earliest start slot and li is the latest finish slot of the bid bi (1 6 ei 6

li 6 T, ei, li ∈ Z+),

– di is the requested number of time slots for the bid bi (1 6 di 6 li− ei + 1, di ∈

Z+),

– and pi is the offered price for the bid bi (pi ∈ R+).

• Eidle(ma, t) denotes the energy cost of operating the physical machine ma for the

time slot t when it is idle;

• Efull(ma, t) denotes the energy cost of operating the physical machine ma for the

time slot t when it is fully utilized;
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• Pres(vd, gd) denotes the reservation price, that is the minimum price (excluding the

energy costs) that the cloud provider requests for scheduling one instance of VM

type vd having size gd for one time slot.

Note that in this definition,

• a is the index of each physical machine ma;

• d is the index of each virtual machine vd;

• i is the index of each bid bi;

• j is the index of each subbid sij of bid bi;

• k is the index of each pair (vijk, gijk) of subbid sij of bid bi;

• t is the index of each time slot in T .

A bid bi = (Si, ei, li, di, pi) is satisfied when all of its subbids in Si are satisfied. On

the other hand, a subbid sij = (Hij , qij) is satisfied when qij VMs among the requested

alternative VM types listed in Hij = {(vij1, gij1), (vij2, gij2), . . . (vijr, gijr)}, are allocated

for di time slots between time slots ei and li.

The outcome determination problem (ODP) of the ECO-CABS model is defined as

determining a maximal set of mutually satisfiable bids and the corresponding schedule for

VMs that maximizes the expected profit of the cloud provider while providing energy-aware

mapping of VMs to physical machines during the defined scheduling period.

To formulate the ODP of the ECO-CABS model using integer linear programming,

the following decision variables are introduced:
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xi =


1, if bid bi is satisfied

0, otherwise

yti =


1, if the reservation period of the VMs requested in bid bi begins at time

slot t if the bid is satisfied

0, otherwise

oat =


1, if physical machine ma is active at time slot t (i.e., if there exists a VM

assigned to the physical machine ma at time slot t)

0, otherwise

zatijk = the number of VMs of VM type vijk requested in subbid sij of bid bi that begins

at time slot t on physical machine ma

Then, the ODP is formulated as follows:

max
∑
bi∈B

pi xi

−
∑

ma∈M

T∑
t=1

Eidle(ma, t) o
at

−
T∑
t=1

∑
ma∈M

∑
bi∈B,
ei6t6li

∑
sij∈Si,

(vijk,gijk)∈Hij ,
vijk=Θ(ma)

min(li−di+1,t)∑
t′=max(ei,t−di+1)

(Efull(ma, t)− Eidle(ma, t)) gijk
ua

zat
′

ijk

−
T∑
t=1

∑
ma∈M

∑
bi∈B,
ei6t6li

∑
sij∈Si,

(vijk,gijk)∈Hij ,
vijk=Θ(ma)

min(li−di+1,t)∑
t′=max(ei,t−di+1)

Pres(vijk,gijk) zat
′

ijk

(1)
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s.t.

(
li−di+1∑
t=ei

yti

)
− xi = 0 (bi ∈ B) (2) ∑

(vijk,gijk)∈Hij

∑
ma∈Ω(vijk)

zatijk

− qij yti = 0 (bi ∈ B, sij ∈ Si, ei 6 t 6 li − di + 1) (3)

∑
bi∈B,
ei6t6li

∑
sij∈Si,

(vijk,gijk)∈Hij ,
vijk=Θ(ma)

min(li−di+1,t)∑
t′=max(ei,t−di+1)

gijk z
at

′

ijk 6 ua o
at (ma ∈M, 1 6 t 6 T ) (4)

xi, y
t
i , o

at ∈ {0, 1} (∀a, i, t) (5)

zatijk ∈ Z+ ∪ {0} (∀a, i, j, k, t) (6)

In this formulation, Eq.(1) is the objective function that has four components. The

first component maximizes the expected revenue of the cloud provider that is the sum

of the offered bid prices. The second and third components of the objective function

minimize the energy cost of operating the physical servers by providing consolidation

of VM instances. Note that if the electricity rate is constant throughout the scheduling

period, then the parameter t can be omitted from both energy cost functions Eidle and Efull.

Finally, the fourth component ensures that the bids exceeding the minimum reservation

price (excluding the energy costs) that the cloud provider requests for VM instances can

be satisfied. Again, note that the costs other than the energy costs can be included in the

reservation price for each VM instance.

Regarding the constraints, the first constraint in Eq.(2) ensures that if a bid is satisfied

then the reservation period for allocated VMs should fit inside the requested time window.

The second constraint in Eq.(3) enforces that all the subbids of a satisfied bid should also

be satisfied, that is for each subbid the requested number of VMs listed inside the subbid

should be scheduled such that all the VMs start at the same time slot which is inside the

requested time window. Finally, the allocated VMs for all bids are assigned to the physical

machines in the third constraint defined in Eq.(4). This constraint also determines the

active physical machines to which at least one VM is assigned for proper consolidation of

VMs.

The ODP of the ECO-CABS model is a generalization of the winner determination

problem of the multi-unit nondiscriminatory combinatorial auction institution defined in
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[16] which is proven to be NP-hard. Therefore, the ODP is also NP-hard.

5 Solution Methods

The optimization problem, the ODP, of the ECO-CABS model is defined using integer

linear programming, which can be solved by general-purpose Mixed-Integer Programming

(MIP) solvers. However, since the ODP is proven to be NP-Hard, it may not be possible to

find optimal solutions in a reasonable time for medium and large-scale problem instances.

Therefore, various heuristics are designed in this study to find high-quality solutions in a

reasonable time. In this section, these heuristic methods are presented in detail.

The source code of the solution methods proposed in this study can be reached from

[62].

5.1 Heuristic Methods

The following heuristic methods are proposed for the ODP of the ECO-CABS model:

i. Greedy Placement Heuristic

ii. Single Bid Placement Heuristic

iii. Multiple Bid Placement Heuristic

iv. Genetic Algorithm

In each of these methods, the bids submitted are processed one by one or in groups.

For this reason, the order of the bids affects the performance of the methods. Therefore,

the following sorting heuristics are also proposed to be used in these heuristic methods:

Sorting Heuristic H1 - Average Profit Considering the Reservation Price: In this

heuristic, the bids are sorted according to the amount of profit that the virtual ma-

chines requested in the bids will provide per time slot in descending order. Note that

in this sorting heuristic only the virtual machine with the lowest reservation price

listed in the subbids is included for determining the cost. The heuristic value H1 of

a bid bi is calculated by subtracting this cost value from the offered price per time

slot as follows:
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H1(bi) =
pi
di
−

∑
sij∈Si,

(vijk,gijk)∈Hij ,
min(Pres(vijk,gijk))

Pres(vijk, gijk) ∗ qij (7)

Sorting Heuristic H2 - Average Profit Considering the Total Cost: In this heuris-

tic, the bids are again sorted in descending order of average profit, however, different

from the heuristic H1, in this heuristic the energy costs of the bids are considered in

calculating the profit. The heuristic value H2 of a bid bi is calculated as follows:

H2(bi) =
pi
di
−

∑
sij∈Si,

(vijk,gijk)∈Hij ,
min(Pres(vijk,gijk))

Pres(vijk, gijk) ∗ qij

−
∑

sij∈Si,
(vijk,gijk)∈Hij ,

min(Pres(vijk,gijk)),
vijk=Θ(ma)

(Efull(ma, t)− Eidle(ma, t)) gijk
ua

∗ qij (8)

5.1.1 Greedy Placement Heuristic

The first heuristic proposed for the ECO-CABS model is the Greedy Placement (GP)

method which is presented in Algorithm 1. In this method, the set of bids is sorted using

the provided sorting heuristic and the bids are processed one by one. The virtual machines

requested in the subbids of a bid are placed on the physical servers in order, starting from

the virtual machines having the smallest reservation price. This placement process is done

by taking into account the time constraints specified in the bid. Subbids are placed starting

from the earliest available time slot. If the physical server instances do not have enough

space for the VM sizes and the quantities specified in a subbid, the placements made so far

are rolled back and the entire procedure is repeated for the next time slot. If the requested

VMs in any of the subbids cannot be placed on physical servers for a feasible time slot,

the bid is marked as rejected and the placement process is continued with the next bid.

When all VMs requested in the subbids of the bid are placed on physical server instances,

the bid is marked as accepted and the same steps are repeated for the subsequent bid.
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Algorithm 1 Greedy Placement Heuristic

Input: Problem instance: TestInstance, Sorting Heuristic: SortMethod
Output: A feasible solution to TestInstance: solution

1: procedure GreedyPlacement
2: Set sortedBids← Sort(TestInstance, SortMethod)
3: Set currentObjectiveV alue← 0
4: Set solution← ∅
5: for each Bid bi ∈ sortedBids do
6: Set bidAccepted← false
7: for each Timeslot tt ∈ T do
8: Set subbidSolutionList← ∅
9: for each Subbid sij ∈ Si do

10: Set subbidSol← AllocateSubbid(sij , tt, di)
11: if subbidSol 6= ∅ then

12: Add subbidSolutionList
+← subbidSol

13: if subbidSolutionList.size() == sij .size() then . All subbids are satisfied
14: objV alSol← CalculateObjectiveV alue(solution, subbidSolutionList)
15: if objV alSol > currentObjectiveV alue then
16: currentObjectiveV alue← objV alSol

17: Add solution
+← subbidSolutionList

18: Set bidAccepted← true

19: if bidAccepted then break

20: return solution
21: procedure AllocateSubbid
22: Parameters: sij , tt, di
23: Define (Hij , qij) = sij
24: Set remainingQty ← qij
25: Set vmSolutionList← ∅
26: for each VM Alternative and Size Tuple (vijk, gijk) ∈ Hij do
27: for each Physical Machine ma ∈ Ω(vijk) do
28: while remainingQty > 0 do
29: if isAllocationFeasible(vijk, gijk, tt, di) then
30: Set remainingQty ← remainingQty − 1
31: Set vmSolutionList← Allocate(vijk, tt, a)
32: else
33: break
34: if remainingQty 6= 0 then
35: Set vmSolutionList← ∅
36: return vmSolutionList
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Note that even when all the VMs in the subbids are placed, it may be the case that

the cost of executing VMs in physical servers can be higher than the offered price of the

bid itself. To prevent such cases, an objective value check is performed at each iteration.

If the new objective value is less than the current solution, the placement of the VMs

requested in the bid is rolled back and the bid is marked as rejected.

5.1.2 Single Bid Placement Heuristic

In the Single Bid Placement (SBP) method presented in Algorithm 2, the set of bids is

again sorted using the provided sorting heuristic and the bids are processed one by one.

However, in this algorithm, the ODP of the ECO-CABS model is solved for every single

bid by using a MIP solver to find the optimal placement for the VMs requested in the

bid. For this purpose, initially, the upper bounds of all decision variables are set to 0.

Then, for each bid bi being processed, the corresponding decision variable is reverted to

its original state, i.e. its upper bound is set back to the original values specified in Eq.

(5) and Eq. (6). This modified model is then solved by the MIP solver. This gives the

best placement for the processed bid. If the bid is accepted, then the lower and upper

bounds of the corresponding decision variables are fixed to their values found by the MIP

solver. In the case of rejection, the lower and upper bounds of the corresponding decision

variables are set to 0. The same procedure is repeated until all the bids are processed.

This method aims to reduce the execution time compared to the optimal MIP solver by

processing bids one by one while giving priority to bids with high sorting heuristic values.

5.1.3 Multiple Bid Placement Heuristic

The SBP described above places bids one by one on the physical servers optimally. How-

ever, approaching the optimum solution is quite difficult as it only considers a single bid

when scheduling VMs. Another disadvantage is that for problem instances with a large

number of bids, the total running time can be high since for each bid an optimization step

is carried out. In Multiple Bid Placement (MBP) method, it is aimed to overcome these

disadvantages by processing the bids in batches. In this method, the bid set is divided

into fixed-size batches, and at each iteration bids inside a batch are processed together.

This time, the same decision variable bound modifications defined in the SBP are applied
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Algorithm 2 Single Bid Placement Heuristic

Input: Problem instance: TestInstance, Sorting Heuristic: SortMethod
Output: A feasible solution to TestInstance: solution

1: procedure SingleBidPlacement
2: Set sortedBids← Sort(TestInstance, SortMethod)
3: Set currentObjectiveV alue← 0
4: Prepare model defined in Eq.(1)-(6)
5: Set upper bounds of decision variables xi ≤ 0 (bi ∈ sortedBids)
6: Set upper bounds of the relevant decision variables as yti ≤ 0, zatijk ≤ 0 (bi ∈
sortedBids, ∀a, j, k, t defined in bi)

7: for each Bid bi ∈ sortedBids do
8: Set the upper bound of decision variable xi to 1: 0 ≤ xi ≤ 1
9: Set bounds of the relevant decision variables as yti ∈ {0, 1}, zatijk ∈ Z+ ∪ {0}

(∀a, j, k, t defined in bi)
10: Optimize model using an optimization solver and set the curentSol as the set

of values of the decision variables
11: if xi == 1 in currentSol then
12: Set the lower bound of decision variable xi to 1: 1 ≤ xi
13: Set lower bounds of the relevant decision variables yti , z

at
ijk to their values in

currentSol (∀a, j, k, t defined in bi)
14: else
15: Set the upper bound of decision variable xi to 0: xi ≤ 0
16: Set upper bounds of the relevant decision variables as yti ≤ 0, zatijk ≤ 0

17: Set solution← model.getDecisionV ariables()
18: return solution
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to the corresponding decision variables in the processed batch. Then, the upper and lower

bounds of the relevant decision variables are fixed accordingly, and the same process is

carried out for the subsequent batches. The pseudocode of the MBP method is presented

in Algorithm 3.

Algorithm 3 Multiple Bid Placement Heuristic

Input: Problem instance: TestInstance, Sorting Heuristic: SortMethod, Batch Size:
bSize

Output: A feasible solution to TestInstance: solution

1: procedure MultipleBidPlacement
2: Set sortedBids← Sort(TestInstance, SortMethod)
3: Prepare model defined in Eq.(1)-(6)
4: Set upper bounds of decision variables xi ≤ 0 (bi ∈ sortedBids)
5: Set upper bounds of the relevant decision variables as yti ≤ 0, zatijk ≤ 0 (bi ∈
sortedBids, ∀a, j, k, t defined in bi)

6: for each Batch of bids batch← sortedBids.nextBatch(bSize) do
7: for each Bid bi ∈ batch do
8: Set the upper bound of decision variable xi to 1: 0 ≤ xi ≤ 1
9: Set bounds of the relevant decision variables as yti ∈ {0, 1}, zatijk ∈ Z+ ∪ {0}

(∀a, j, k, t defined in bi)

10: Optimize model using an optimization solver and set the curentSol as the set
of values of the decision variables

11: for each Bid bi ∈ batch do
12: if xi == 1 in currentSol then
13: Set the lower bound of decision variable xi to 1: 1 ≤ xi
14: Set lower bounds of the relevant decision variables yti , z

at
ijk to their values

in currentSol (∀a, j, k, t defined in bi)
15: else
16: Set the upper bound of decision variable xi to 0: xi ≤ 0
17: Set upper bounds of the relevant decision variables as yti ≤ 0, zatijk ≤ 0

18: Set solution← model.getDecisionV ariables()
19: return solution

5.1.4 Genetic Algorithm

The final heuristic method proposed for the ECO-CABS model is the Genetic Algorithm

(GA) the pseudocode of which is presented in Algorithm 4. In the GA implementation,

each individual corresponds to an order of bids, i.e. a permutation of bids, and the

population consists of different bid orders. Thus, instead of the solution space, the genetic

algorithm searches the space of all possible orders of bids. Since an order of bids does not

define a solution, the order is converted to a solution using the Greedy Placement method
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presented in Algorithm 1. The objective value returned by this method for an individual,

i.e. the order of bids, is used as the fitness value of the corresponding individual.

The initial population in the genetic algorithm is constructed using three predefined

bid orders and N − 3 random bid orders where N is the population size. The two of the

predefined orders are the bid orders defined by the sorting heuristics H1 and H2. For the

third predefined order, the linear relaxation of the ODP presented in Eq.(2)-(6) is solved.

Then, the bids are sorted in descending order of the values of the relaxed decision variables

x.

The selection of candidate parents is conducted using the binary tournament selection

method [63]. The crossover and mutation methods used in this approach are described in

detail below.

Crossover: Since this GA implementation searches the space of possible bid orders,

a modified version of the uniform crossover method is used in this implementation. So,

in the crossover method, the bid orders of both parents are preserved as much as possible

when forming a new individual. In this method, bid orders of the two parents are traversed

and at each step, a bid from one of the parents (uniformly chosen with equal probability)

is added to the bid order of the newly created individual. Then, the other parent’s bid is

added to this order. If the selected bid has already been added to the order of the new

individual before, it will not be added again.

Figure 5a shows the bid orders of the two example parents. First, a uniform selection is

made between the parents with equal probability. Suppose that Parent 1 is chosen. Then

the first bid of Parent 1, i.e. Bid 3, is added to the order of the child. After that, the

corresponding bid of the other parent, Bid 2 is added to the order of the child immediately

after Bid 3.

In the next step, a choice is made between the second bids of both parents. Suppose

that this time Parent 2 is selected. Thus, the second bid of Parent 2 is added to the order

of the child first. Then, the second bid of the other parent is added immediately after this

bid as can be seen in Figure 5b.

In the third step seen in Figure 5c, independent of the selected parent, no action is

taken in this step since both parents’ bids have already been added to the order of the

child in the previous steps.
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Algorithm 4 Genetic Algorithm

Input: Problem instance: TestInstance, Population Size: N
Output: A feasible solution to TestInstance: solution

1: procedure GeneticAlgorithm - Main Method
2: Set population← InitializePopulation()
3: Set bestIndividualSoFar ← GetBestIndividual(population)
4: repeat
5: Call GenerationCycle()
6: Set bestIndividualInGeneration← GetBestIndividual(population)
7: if bestIndividualInGeneration.fitness > bestIndividualSoFar.fitness then
8: Set bestIndividualSoFar ← bestIndividualInGeneration
9: until One of the stopping criteria is true

10: Set mbpSolution←MultipleBidP lacement(bestIndividualSoFar)
11: if bestIndividualInGeneration.fitness > mbpSolution.fitness then
12: return bestIndividualInGeneration
13: else
14: return mbpSolution

15: procedure GenerationCycle
16: Parameters: population
17: Set parent1 ← BinaryTournamentSelection(population)
18: Set parent2 ← BinaryTournamentSelection(population)
19: Call Crossover(population, parent1, parent2)
20: Call Mutation(population)

21: procedure Crossover
22: Parameters: population, parent1, parent2
23: Initialize lookup table: remainingSet← [1, numberOfBids]
24: Set childBidOrder ← ∅
25: for each Tuple (bi,p1 , bi,p2) ∈ parent1.bidOrder(), parent2.bidOrder() do
26: Set firstP ivotBid, secondPivotBid← 0
27: if RandomNumber(0.0, 1.0) ≥ 0.5 then
28: firstP ivotBid← bi,p1
29: secondPivotBid← bi,p2
30: else
31: firstP ivotBid← bi,p2
32: secondPivotBid← bi,p1

33: Set childBidOrder
+← firstP ivotBid, secondPivotBid

34: Set remainingSet
−← firstP ivotBid, secondPivotBid

35: Add childBidOrder
+← remainingSet

36: Set child← FitnessEvaluation(childBidOrder)
37: Call ReplaceWorstSolution(child)
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3 7 9 2 10 6 8 4 1 5

2 9 3 1 4 6 7 8 5 10

3 2
Parent 1

Parent 2

Child

1 2 3 4 5 6 7 8 9 10

Remaining Set

(a) Crossover Step 1: Parent 1 is selected. The first bid of Parent 1, and then the first bid of
Parent 2 are added to the child.

3 7 9 2 10 6 8 4 1 5

2 9 3 1 4 6 7 8 5 10

3 2 9 7
Parent 1

Parent 2

1 2 3 4 5 6 7 8 9 10

Remaining Set

Child

(b) Crossover Step 2: Parent 2 is selected. The second bid of Parent 2, and then the second bid
of Parent 1 are added to the child.

3 7 9 2 10 6 8 4 1 5

2 9 3 1 4 6 7 8 5 10

3 2 9 7
Parent 1

Parent 2

Child

1 2 3 4 5 6 7 8 9 10

Remaining Set

(c) Crossover Step 3: Parent 1 is selected. No action is taken since the bids of both parents have
already been added to the child.

3 7 9 2 10 6 8 4 1 5

2 9 3 1 4 6 7 8 5 10

3 2 9 7 1
Parent 1

Parent 2

1 2 3 4 5 6 7 8 9 10

Remaining Set

Child

(d) Crossover Step 4: Parent 1 is selected. Since the fourth bid of Parent 1 has already been
added, only the fourth bid of the Parent 2 is added to the child.

Figure 5: The steps of the crossover method of the genetic algorithm on an example
scenario.
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Finally, in the fourth step, suppose that Parent 1 is selected again. However, since the

fourth bid in the order of Parent 1, Bid 2, has already been added to the child, this bid is

skipped. Only the fourth bid in the order of Parent 2, Bid 1, is added to the order of the

child. Details of this step are presented in Figure 5d. When these steps are completed, a

complete bid ordering is obtained for the new individual.

Thus, after the crossover operation, a new individual is obtained, and the individual

with the lowest fitness value is replaced by this new individual.

Mutation: In the mutation method, the order of a randomly selected individual is

altered. First, the order of the bids for the individual to be mutated is divided into fixed-

sized groups, and then two randomly selected bids from each group are swapped. Since

the swap operation is between the bids within each group, the original bid order does not

change dramatically. In this study, a mutation probability of 0.05 is used and each bid

order to be mutated is divided into groups of five 1. Three exemplary mutations performed

on an example individual are shown in Figure 6.

3 7 9 2 10 6 8 11 4 1 5 13 12

Individual

3 10 9 2 7 6 11 8 4 1 5 12 13 #1

2 7 9 3 10 4 8 11 6 1 12 13 5 #2

9 7 3 2 10 6 1 11 4 8 13 5 12 #3

Figure 6: Three mutation possibilities for an example individual with a group size of 5.

6 Experimental Results

By virtue of its novel bidding language, the ECO-CABS model enables users to indicate

their complex virtual resource requests using logical AND or OR relations along with the

scheduling constraints. Although major cloud providers provide grouping functionality for

1These values are determined based on a preliminary test.
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managing multiple identical VMs such as Amazon EC2 Placement Groups [64], Google

Cloud Instance Groups [65], and Microsoft Azure Virtual Machine Scale Sets [66], to the

best of our knowledge, no cloud provider offers a mechanism to obtain possibly complex

preferences of the users as the ECO-CABS model. Without such a mechanism, it is not

possible to capture the details required for assessing the real-life performance of the ECO-

CABS model.

For this reason, to estimate the performance of the ECO-CABS model and the proposed

heuristic methods, a test case generator has been developed. The generator has several

parameters for generating test cases representing various scenarios, which are:

i. Available VM Count defines the sum of the VMs with a base configuration that

can be run concurrently on all physical server instances, that is the sum of the ua

values of the physical server instances. The values {1024, 2048, 3072, 4096} are used

for this parameter.

ii. Bid Density defines the ratio of requested VM count to the available VM count

considering the duration requested in the bids and the total scheduling period. The

requested VM count is calculated as the sum of the requested sizes of the VMs in all

subbids. This parameter takes the values of {0.25, 0.50, 0.75, 1, 2, 3, 4, 5}. Note that

the bid density parameter represents the inverse of the supply-demand ratio. When

the bid density is less than 1, the supply exceeds the demand, whereas, when it is

greater than 1, the demand exceeds the supply.

iii. Mean Number of Subbids defines the mean number of subbids in a bid. Poisson

distribution with mean values of {1, 2, 3} is used for this parameter.

iv. Mean Number of Alternative VMs in a Subbid defines the mean number

of alternative VM requests in a subbid. Poisson distribution with mean values of

{1, 2, 3} is used for this parameter.

v. Mean Number of Quantity for a Subbid defines the mean number of quantity

values for VM requests in a subbid. Poisson distribution with mean values of {1, 2, 3}

is used for this parameter.
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vi. Scheduling Period defines the total number of available time slots for the requested

VMs to be scheduled. This parameter takes the values of {5, 10, 15, 20} slots.

The first parameter determines the number of physical server instances in the cloud

environment, while together with the first parameter, the bid density parameter determines

the number of bids created in the test case. All defined parameters affect the complexity

of the problems generated.

Using the stated value set for each parameter, 3456 test instances were created using the

test case generator. To evaluate the model and estimate the performance of the proposed

heuristic methods, each test instance was solved by a MIP solver, Gurobi Optimizer version

9.1 [67] with a time limit of one hour per test instance. Experiments were conducted on a

workstation with a 16-core 3.10 GHz Intel Xeon CPU and 128 GB of RAM.

The reservation prices used in the study are determined based on AWS EC2 on-demand

virtual machine instance prices [68]. One time slot is considered as 24 hours and the cost

of energy per kWh is set to €0.21 which is the average electricity cost in the EU [69].

The source code of the test case generator proposed in this study can be reached from

[62].

6.1 Evaluating the Performance of the Heuristic Methods

The ECO-CABS model is a novel scheduling model that combines the multi-unit nondis-

criminatory combinatorial auction institution with an energy-aware virtual to physical

resource mapping. The optimization problem (ODP) of the ECO-CABS model is signifi-

cantly different than that of the proposed approaches in the literature as surveyed briefly in

Section 2. Therefore, the generated test cases cannot be solved using the solution methods

proposed in those studies.

For this reason, to evaluate the performance of the proposed heuristic methods, the

results found by the proposed heuristic methods are compared to the results found by

the MIP solver. For this purpose, each of the 3456 test instances is solved using all

the proposed heuristic methods and also using the MIP solver for obtaining the optimal

solutions for the ODP of the ECO-CABS model. However, although relatively small-sized

test cases are generated, the MIP solver was able to find optimal solutions for only 547
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test instances. For the 2849 instances, it was able to find a feasible solution in one hour

which is not necessarily optimal. For the remaining 60 test instances, the MIP solver could

not find a feasible solution at all within this one-hour time limit. The instances for which

the MIP solver could not find a solution are not included in this experiment. Although

the MIP solver could not find the optimal solutions for the majority of the test cases, it

is observed that the optimality gaps for these instances are very small on average. The

histogram presenting the optimality gap values can be seen in Figure 7. It is observed

that the majority of solutions obtained with the MIP solver have optimality gap values

less than 1%, that is the solutions are within at most 1% of the optimal results.
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Figure 7: Histogram of the optimality gap values of the solutions found by the MIP
solver for all test instances.

To assess the performance of a heuristic method, a metric named success rate is used

which indicates the ratio of the solution found by a heuristic method to the solution found

by the MIP solver. Thus, a success rate of 100% indicates that the corresponding heuristic

has found the same solution as the MIP solver in terms of objective values. Each test

instance is solved with 12 different heuristic and sorting method combinations. The box

plot for the success rates for all proposed heuristic methods can be seen in Figure 8.

To understand if the differences in the mean success rates of the proposed heuristic

methods presented in Figure 8 are significant, the one-way Welch analysis of variance
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Figure 8: Box plot representing the success rates of the proposed heuristic methods for
all test cases.

(Welch ANOVA) [70] test is conducted at an α = 0.05 significance level. The success

rates are found to be statistically different for different heuristic configurations (Welch’s

F (11, 15999.868) = 1430.234, p < 0.0005). Since the assumption of homogeneity of vari-

ances is violated, as assessed by Levene’s test for equality of variances (p < 0.0005), to

interpret the results of the Welch ANOVA and the results from the Games-Howell post hoc

test are used for multiple comparisons. The results of multiple comparisons are presented

in Table 3. In the following text, the term significant is used for a difference of mean

values that is statistically significant at the α = 0.05 significance level.

The Greedy Placement Heuristic (GP) is observed to have approximately 84.3% and

86.3% success rates on average using the proposed sorting heuristics H1 and H2, respec-

tively. It is observed that using H2 instead of H1 contributes to the quality of solutions

significantly for this heuristic.

Although more complicated, the Single Bid Placement Heuristic (SBP), provides a

significantly lower quality of solutions on average than the GP method with mean success

rates of approximately 83.0% and 81.7% using H1 and H2, respectively. However, unlike
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Table 3: Pairwise comparsions of the mean success rates of the heuristic methods provided
by one-way Welch ANOVA with Games-Howell post hoc test. Each cell at the coordinate
(X,Y ) represents the difference between the mean success rate of the heuristic methods at
the row X and at the column Y. Values written in bold indicates that the corresponding
mean difference is significant at the α = 0.05 significance level.

GP-H1 GP-H2 SBP-H1 SBP-H2 MBP-H1-10 MBP-H1-20 MBP-H1-30 MBP-H2-10 MBP-H2-20 MBP-H2-30 GA-10

GA-20 11.1% 9.1% 12.4% 13.6% 7.7% 5.7% 5.0% 5.5% 3.8% 3.1% 0.2%

GA-10 11.0% 8.9% 12.3% 13.5% 7.5% 5.5% 4.8% 5.4% 3.6% 2.9%

MBP-H2-30 8.1% 6.0% 9.3% 10.6% 4.6% 2.6% 1.9% 2.4% 0.7%

MBP-H2-20 7.3% 5.3% 8.6% 9.9% 3.9% 1.9% 1.2% 1.7%

MBP-H2-10 5.6% 3.6% 6.9% 8.1% 2.2% 0.2% -0.5%

MBP-H1-30 6.1% 4.1% 7.4% 8.7% 2.7% 0.7%

MBP-H1-20 5.4% 3.4% 6.7% 7.9% 2.0%

MBP-H1-10 3.5% 1.4% 4.7% 6.0%

SBP-H2 -2.5% -4.6% -1.2%

SBP-H1 -1.3% -3.3%

GP-H2 2.1%

the GP method, the SBP method using sorting heuristic H1 provides significantly better

solutions than the SBP method using the sorting heuristic H2.

The GP and the SBP methods do not have any input parameters. However, as ex-

plained in the previous section the Multiple Bid Placement Heuristic (MBP) has a batch-

size parameter that defines the number of bids to be processed together in a single run. To

estimate the effect of this parameter, three batch-size values, 10, 20, and 30, are used in

this experiment. Thus, along with the two sorting heuristics, 3x2=6 configurations were

executed for each test case. For each batch, a time limit of 120 seconds is enforced.

Compared to the previous methods, a significant improvement in the quality of the

solutions is observed using the MBP method. The best results are obtained when the

batch size of 30 and the sorting heuristic H2 are used where the mean success rate is

92.3% . It is also seen that there exists a positive correlation between the batch size and

the mean success rate, and the sorting heuristic H2 provides significantly better solutions

than the sorting heuristic H1. Note that since a time limit of 120 seconds is enforced

for each batch, the maximum batch size is set to 30 in this experiment. The batch size

parameter may further be increased in accordance with this time limit which will, of course,

increase the running time of the method.

The most promising method proposed in this study is the Genetic Algorithm (GA).

Similar to the MBP method, the GA has a population size parameter and the population

sizes of 10 and 20 are used in this experiment. The GA has provided the best results with
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mean success rates of 95.2% and 95.4% for the population sizes, 10 and 20, respectively.

However, the increase in the mean success rate when a population size of 20 is used has not

been found statistically significant, therefore higher population sizes were not considered

in this experiment.

As noted at the beginning of this section, the available VM count parameter directly

affects the size of the problem instances. Therefore, the performances of the heuristic

methods are also analyzed with respect to this parameter. The box plot in Figure 9

presents the mean success rates of the proposed heuristics grouped by the available VM

count parameter. As the number of available VMs increases, it is observed that the quality

of solutions with respect to the MIP solver tends to increase for the GP methods, whereas

it tends to decrease for the SBP methods. The reason for the decrease is that for the

test instances containing a high number of bids, the SBP method cannot find optimal

placement for even a single bid because of the time limit set per bid. The changes in the

quality of solutions found by the remaining methods are found to be insignificant.
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Figure 9: Box plot representing success rates of the proposed heuristic methods grouped
by the available VM count paremeter .

Another important metric for evaluating the performances of heuristic methods is the

running time of the methods. Table 4 presents the mean and the standard deviations of the
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running times of the MIP solver and the proposed heuristic methods based on the available

VM count parameter. The mean running time of the MIP solver for all test instances

increases from 2485 seconds to 3410 seconds as the number of available (also requested)

VMs increases with an overall mean value of 3141 seconds and standard deviation of 998

seconds. Recall that among the 3396 test instances (discarding the unsolved instances),

only 547 of them are solved within 1 hour time limit, and the mean running time would

be much higher if a time limit of 3600 seconds was not enforced.

Table 4: Mean running times (in seconds) of the proposed heuristic methods grouped by
the available VM count paremeter.

Heuristic

Available VM Count

1024 2048 3072 4096 Overall

mean std mean std mean std mean std mean std

GP-H1 < 1 < 1 2 3 6 11 11 16 5 8
GP-H2 < 1 < 1 2 4 6 10 11 16 5 8

SBP-H1 21 32 239 470 1116 2190 1870 3375 811 1517
SBP-H2 76 96 652 827 1315 1774 2568 3587 1153 1571

MBP-H1-10 37 49 75 79 225 400 423 674 190 300
MBP-H1-20 71 54 101 72 161 164 501 707 209 249
MBP-H1-30 82 52 104 52 210 208 326 346 181 165

MBP-H2-10 40 49 79 95 194 302 456 766 192 303
MBP-H2-20 73 54 107 85 202 206 384 480 192 206
MBP-H2-30 82 52 103 59 172 148 303 378 165 159

GA-10 73 64 199 258 427 490 637 634 334 362
GA-20 82 79 274 388 608 700 871 865 459 508

MIP Solver 2485 1568 3290 923 3378 768 3410 732 3141 998

Being the least complicated method, the GP method provides the fastest solutions for

all test instances with a mean running time of approximately 5 seconds. Therefore, it can

be used when the problem sizes are huge or when a solution is required in a very short

interval.

The longest-running method is the SBP method with a mean running time of 811

seconds when H1 is used and 1153 seconds when H2 is used. The reason for longer running

times is that an optimization step is carried out for each bid in the problem instance. Thus,

it is not feasible to use this method for large problem instances.

The mean running times of the MBP method range between 165 and 209 seconds

depending on the sorting heuristic used and the batch size parameter. The running time
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of the method is observed to be lower when the sorting heuristic H2 is used. The effect

of the batch size on the running time cannot be deduced simply, however, increasing the

batch size to 30 causes a decrease in the mean running times for both sorting heuristic

methods.

The GA executes slower than both the GP and MBH methods having a mean running

time of 334 seconds when a population size of 10 is used and 459 seconds when a population

size of 20 is used. The extra running time is used to search the solution space efficiently.

Recall that since there is no significant improvement observed in the quality of solutions

when the population size is increased to 20, the population size of 10 would be enough

for this method and the mean running time is 334 seconds in this case. Thus, it can be

concluded that the GA executes significantly faster than the MIP solver on average.

6.2 Estimating the Improvement in Outcomes Using the ECO-CABS

Model

The features of the ECO-CABS model and its benefits have been explained in detail in

the previous sections. To estimate the improvement to be achieved using the ECO-CABS

model on a cloud system, we simulated each test case using the First-Come-First-Served

approach of the current cloud systems in order to compare the outcomes. More specifically,

for each test case, the following steps were carried out:

i. The bids in the given test case are shuffled uniformly to represent a random arrival

order.

ii. The bids are processed one by one in the arrival order to simulate the First-Come-

First-Served approach of the current cloud systems.

iii. Each bid is checked whether it can be scheduled or not based on the current utiliza-

tion of the physical servers. If a bid can be scheduled, then the VMs are mapped

to the physical server such as the energy consumption is minimized, and the bid is

included in the solution of the simulation.

iv. The objective value of the simulation solution is calculated after all the bids are

processed.
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Each of the 3396 test instances was simulated 20 times with different random arrival

orders and the mean objective value of 20 runs was calculated for each test instance. These

mean objective values are compared to the objective values obtained by solving the ODP

of the ECO-CABS model for the same instances.

The mean improvement percentages grouped according to the bid density parameter

are presented in Figure 10. It is observed that the ECO-CABS model provides approx-

imately 9% to 66% better results compared to the simulation results for different bid

density values. The overall improvement for all test cases is observed as approximately

37%.
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Figure 10: Mean improvement percentage in the objective values using the ECO-CABS
model over the simulation results.

Note that when the bid density values less than one, i.e. the number of available VM

slots is greater than the number of requested VMs, most of the bids can be scheduled.

Therefore, the improvement to be observed when the ECO-CABBS model is used is rel-

atively small, obtained mostly by the energy-efficient placement of VMs to the physical

servers. However, when the bid density is more than one, the model’s feature of selecting

the optimal set of bids becomes effective, further increasing the improvement rate.
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7 CONCLUSION

In this study, an energy-aware combinatorial auction-based virtual machine scheduling

model for cloud environments is presented. The model utilizes the multi-unit nondiscrim-

inatory combinatorial auction institution for determining the efficient scheduling of VMs.

The bidding language of the ECO-CABS model allows cloud users to declare their com-

plex VM scheduling preferences in their bids along with the duration and the time frame

for the allocation. The model also incorporates an energy model based on the physical

server utilization levels. Together with the auction features and the energy model, the

ECO-CABS model finds the optimal schedule of VMs and the energy-efficient placement

of VMs to the physical servers based on the bids of the users.

The mathematical formulation of the ECO-CABS model is provided and the corre-

sponding optimization problem of the model is formulated using integer linear program-

ming. Since the optimization problem of the model is NP-Hard, several VM scheduling

and placement heuristic methods along with two different sorting heuristic methods have

been proposed. To demonstrate the performance of the model and the heuristic meth-

ods, a comprehensive test suite of 3456 test instances with different complexities has been

prepared using a test case generator. Two experiments have been conducted. In the first

experiment, the performances of the proposed heuristic methods are measured. The test

suite is solved using 12 different heuristic configurations and a general-purpose MIP solver.

It is observed that the simplest method proposed, the greedy placement method, provides

solutions within 15% of the optimum in a few seconds. The most complicated method pro-

posed, the genetic algorithm-based heuristic method, has outperformed all other heuristic

methods providing solutions within only 5% of the optimum while executing significantly

faster than the MIP solver. In the second experiment, the improvement to be obtained

when the proposed ECO-CABS model is used in data centers is studied. It is estimated

that approximately a 37% improvement in the profit of the cloud providers can be obtained

when the ECO-CABS model is used on average. This improvement rate further increases

as the number of bids submitted by the user increases.

The ECO-CABS model provides efficient VM scheduling even in real-world cloud en-

vironments within reasonable times using the proposed heuristic methods. The model is
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expected to contribute to a sustainable cloud computing platform with reduced energy

usage while offering higher profits to cloud providers.
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